Skip to main content

Mole Concept Solutions

Go to the Tutorials on Mole Concept

QUESTION 1
How many moles of limestone, CaCO3 will be required to produce 5.6 g of quicklime, CaO?

                        CaCO3 (s) → CaO (s) + CO2 (g)

[Ca = 40, C = 12, O = 16]

A. 0.20
B. 0.10
C. 1.12
D. 0.56

SOLUTION
From the question, information is only provided about calcium oxide and we are to use that to get the moles of limestone that reacted. This means that the major players are CaCO3 and CaO, carbon (IV) oxide is a detractor/spectator.

Hence, from the equation of reaction:

                                     1 mol CaCO3 ≡ 1 mol CaO …………. (I)

                            number of moles, n = reacting mass, m/molar mass, M
                      
                                                nCaO = mCaO/MCaO

                                                         = 5.6/(40 + 16)
                                                         = 5.6 g/56 g mol-1
                                                         = 0.1 mol

From equation (i),                   nCaCO3 = nCaO

therefore,                               nCaCO3 = 0.10 mol    [B]

Alternatively, we can use the mole-mass relationship to solve the problem:

                               1 mol CaCO3 ≡ 1 mol CaO (mole ratio) …………. (I)

                               1 mol CaCO3 ≡ 56 g CaO (mole-molar mass relationship)
                              
                               x mol CaCO3 ≡ 5.6 g mol-1 CaO (mole-reacting mass)

Solving for x;                             x = 5.6 g/5.6 g mol-1
                                                   
                                                   = 0.10 mol     [B]

QUESTION 2

CaCO3 (s) + 2HCl (aq) → CaCl2 (aq) + H2O (l) + CO2 (g)

What volume of gas is evolved at s.t.p if 2 g of calcium trioxocarbonate (IV) is added to a solution of hydrochloric acid?

[Ca = 40, C = 12, O =16, Cl = 35.5, H = 1, Molar volume of a gas at s.t.p = 22.4 dm3]

A. 112 cm3
B. 224 cm3
C. 448 cm3
D. 2240 cm3

SOLUTION
The question provides information on the mass of calcium trioxocarbonate (IV), and we are meant to calculate the volume of gas (carbon (IV) oxide) that was evolved. So, the major players of the reaction are CaCO3 and CO2, while HCl, CaCl2 and H2O are the detractors/spectators.

From the equation of reaction:

                                             1 mol CO2 ≡ 1 mol CaCO3 …………. (I)

                                 number of moles, n = reacting mass, m/molar mass, M

                                                 nCaCO3 = m CaCO3/M CaCO3

                                                              = 2/[40 + 12 + (16 x 3)]

                                                              = 2 g/100 g mol-1

                                                              = 0.02 mol

From equation (I),                           nCO2 = nCaCO3

therefore,                                        nCO2 = 0.02 mol

but,                             number of moles, n = volume, v/molar volume, Vm

                                                       vCO2 = nCO2 x VmCO2

                                                                = 0.02 mol x 22.4 dm3 mol-1
           
                                                                = 0.448 dm3 x 1000 cm3 dm-3

                                                                = 448 cm3   [C]

Note that whenever you use the value of the molar volume of a gas at s.t.p as 22.4 dm3, the unit of the calculated volume will be in dm3.

In this question, the required unit of the calculated volume is cm3, which is why it is to converted from dm3 to cm3 by using the conversion of 1000 cm3 = 1 dm3

Alternatively, we can use the mass-volume relationship:

                          1 mol CaCO3 ≡ 1 mol CO2 (mole ratio) …………. (I)

                          100 g CaCO3 ≡ 22.4 dm3 CaCO3 (molar mass-molar volume)

                              2 g CaCO3 ≡ x dm3 CO2 (mass-volume)

Solving for x;

                                           x = 2 g x 22.4 dm3/100 g

                                              = 0.448 dm3 x 1000 cm3 dm-3

                                              = 448 cm3   [C]


QUESTION 3
If a solution contains 4.9 g of tetraoxosulphate (VI) acid, calculate the amount of copper (II) oxide that will react with it. [Cu = 64, O = 16, S = 32, H = 1]

A. 0.8 g
B. 4.0 g
C. 40.0 g
D. 80.0 g

SOLUTION
No equation of reaction is given in this question. So, the first thing is to write the balanced equation of reaction.

                            H2SO4 (aq) + CuO (s) → CuSO4 (aq) + H2O (l)

Then, separate the players from the spectators. H2SO4 and CuO are the players because we are asked to use the mass of H2SO4 to determine the mass of CuO that reacted. Nothing was said about CuSO4 and H2O, which means they are the spectators.

So, from the equation of reaction:

                                  1 mol H2SO4 ≡ 1 mol CuO …………. (I)

                         number of moles, n = reacting mass, m/molar mass, M

                                          nH2SO4 = m H2SO4/M H2SO4

                                                       = 4.9/[(2 x 1) + 32 + (16 x 4)]

                                                       = 4.9 g/98 g mol-1

                                                       = 0.05 mol

From equation (I),                    nCuO = nH2SO4

therefore,                                nCuO = 0.05 mol

but,
                                              mCuO = nCuO x MCuO

                                                        = 0.05 x (64 + 16)

                                                        = 0.05 mol x 80 g mol-1

                                                        = 4.0 g   [B]

Alternatively, we can use the mass-mass relationship:

                                     1 mol H2SO4 ≡ 1 mol CuO (mole ratio) …………. (I)

                                       98 g H2SO4 ≡ 80 g CuO (molar mass-molar mass)

                                       4.9 g H2SO4 ≡ x g CuO (mass-mass)
Solving for x;

                                                        x = 4.9 g x 80 g mol-1/98 g mol-1

                                                           = 4.0 g   [B]

Comments

Popular posts from this blog

Salts: Types, Preparation & Uses

Introduction Before they are introduced to acids and bases, young chemistry students always think that sodium chloride (common salt) is everything there is to know about salts. However, from their knowledge of acids and bases, they also get to know about other substances, such as copper (II) tetraoxosulphate (VI), potassium trioxocarbonate (IV), ammonium chloride, calcium trioxonitrate (V) etc, which are classified as salts. These substances are the outcomes of the Arrhenius acid-base reactions. So, what is a salt? Definitions We will define a salt in terms of basicity (replaceable hydrogen ions) and neutralization. I) A salt is a substance formed when all or part of the replaceable hydrogen ions in an acid, are replaced by metallic ions (Na+, K+, Mg2+, Ca2+, Cu2+ etc) or ammonium ions (NH4+). This implies that every acid has its corresponding salts. The list below shows examples of some salts and their parent acids. 1. Acid : Hydrochloric acid (HCl) Salts : Sodium chloride...

Acids & Bases (Part II): Preparation, Properties & Uses of Bases

In a layman's term, a base is the opposite of an acid. In other words, a base is everything an acid is not. Recall that in the Part I of this series, we looked at the definition of an acid using three different concepts. Similarly, we are going to define a base using the same concepts. Definition Lewis Bases According to G. N. Lewis, a base is any species that can readily donate a pair of electrons. The availability of lone pair(s) of electrons increases a substance's ability to behave as a base. Examples include H2Ö, ÑH3, Cl-, F- etc. They are also considered to be nucleophiles. Any species with an electron-rich centre is said to be a nucleophile. Brønsted-Lowry Bases According to Brønsted and Lowry, an acid is a proton donor, while a base is a proton acceptor. In other words, any substance that has the ability to accept a proton (hydrogen ion, H+) by donating a pair of electrons to it, is said to be a base. Examples are H2Ö, ÑH3, Br- etc. H2Ö(l) + H+(aq) <----...

Gas Laws (Part II): Gay-Lussac's Law & Avogadro's Law

The Gay-Lussac's Law of Combining Volumes states that when gases react, they do so in volumes, which are in simple ratio to one another and to the volume of the product, if any; provided temperature and pressure remain constant. It applies to only gases, which means that solid and liquid reactants and products are always ignored when applying this law. For instance, hydrogen burns in oxygen at 100°C to form steam according to the equation:        2H2(g) + O2(g) ---> 2H2O(g)          2mol      1mol           2mol          2vol        1vol            2vol          2cm^3    1cm^3        2cm^3 From the above, it implie...